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Counterparty credit risk management

Credit Rates etc

No CSA Eg, monolines ―

CSA on 
downgrade

Eg, AIG
Highly-rated 

counterparties

CSA Interbank business Interbank business

100% 
collateral

Credit-linked notes Structured notes

Central 
clearing

ICE, Eurex, Clearnet Swapclear
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Counterparty credit risk 

• A highly correlated counterparty with no CSA or other credit mitigation.
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Central clearing

Market
Cleared
amount

Outstanding
Market 

Oustanding
Comments

ICE Credit $2,200 bn $218 bn $26,500 bn

• ~15% of business in  
Europe; 
• currently indices only;
• opens to buyside
Oct09.

Eurex Credit €0.09 bn €0.09 bn $26,500 bn
• 3 trades, one on single 
name CDS.

Clearnet Credit ― ― $26,500 bn • Launches Dec 2009.

SwapClear Rates $85,000 bn $403,000 bn

• 90% of new 
intradealer IRS; 
• opens to buyside H2 
2009.
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The push for central clearing

• Correlated counterparties.  Banks have concentrated on allocating derivatives line according 
to creditworthiness, but we know from history of monolines that creditworthiness 
conditioned on situations where derivatives are in the money is more relevant. 

... although buyside entities may not all move to central clearing.

• Close-out on bankruptcy.  Lehman bankruptcy highlighted complexity of managing derivatives 
close-outs on default of highly connected counterparty ...

... although as it happens Lehman close-outs ran smoothly.

• Market transparency.  Weak transaction reporting left authorities unaware of huge positions 
amassed by AIG FP ...

... although as it happens CDS on subprime executed by AIG FP would not be suitable for 
central clearing.

• Aid to settlement efficiency.  Settlement backlogs in CDS market have in the past reached 
unacceptable levels, and dealers have at times done a poor job of properly unwinding trades 
after closing out ...

... although as it happens reduction of outstanding CDS from >$60tn to <$30tn has been 
accomplished mostly through trade compression services rather than through CCPs.

• Retention of trading liquidity in a crisis.  Cutting derivatives lines because of increased credit 
risk in the crisis lead to market illiquidity ...

... although if CCP credit quality were ever to be seriously called into question then there 
would be severe implications for market liquidity.
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The limits on central clearing benefits

• Fragmentation of central clearing reduces diversification and offset benefits. 

Historical development of central clearing looks likely to lead to different clearers for 
different asset classes (eg, ICE for credit, SwapClear for rates, CME etc for 
commoditities).

Political pressure likely to lead to separate European clearing houses.

• Types of trade. 

Hard to do tailored or specialist structures.

• Exposure to CCP.  

Banks likely to have large CCP exposures, CCP’s are systemically siginificant.

• Buyside may not be included in CCP framework.

Although CCPs are opening up to buyside, it is not yet clear what the buyside take-up will 
be.

Counterparty credit risk likely to remain an issue for some time to come.
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Pricing and hedging counterparty risk

• Complexity of counterparty risk:

• Netting;

• No CSA/ CSA on downgrade/ “regular” CSA;

• CSA threshold issues.

• Modelling techniques.

• Focus on CDS to illustrate issues.

• Does counterparty- or self-hedging change things?
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Counterparty- and self-hedging

Counterparty hedging Self hedging

• We wish to buy protection on RefCo
(trading at 700) from CPCo (trading at 500).  

• We wish to sell protection on RefCo (trading 
at 700); we ourselves are trading at 500. 

• Our model determines that correlation 
between RefCo and CPCo means we agree to 
pay only 400 for protection rather than 700.

• Our model determines that correlation 
between RefCo and ourselves means we 
agree to accept only 400 for protection rather 
than 700.

• To hedge our counterparty risk we will have 
to incur the expense of buying protection on 
a delta amount of CPCo.

• To hedge our self risk we will sell protection 
on a delta amount of our own name (perhaps 
through buying a CLN, or  buying our own 
bonds).

• We should also be aware that we have less 
than 100% delta on RefCo. 

• We should also be aware that we have less 
than 100% delta on RefCo. 

• Failure to buy protection on CPCo may make 
our protection look cheap (400 rather than 
700), but we are running the risk of CPCo
widening out, and perhaps failing.

• Failure to sell protection on ourselves leaves 
us exposed to our own name: if it tightened 
in to double digits we might find ourselves 
300 basis points under water, without any 
change in RefCo.



9

Impact of counterparty- or self-hedging

• Hedging counterparty risk enhances correlation 
between protection seller and reference entity (eg, 
monolines). 

• Hedging self risk may involve overcoming funding and 
regulatory hurdles:

Buying own bonds (requires funding); or

Selling own protection---eg, through creating CLN 
(requires funding).

Either way will tend to diminish correlation 
between self and reference entity on which 
protection sold ...

.... But makes poor trades much more painful!
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Credit Value Adjustment (CVA)

• Adjusts valuation of a trade or portfolio for the possibility of self or counterparty default.

• Prior to credit crunch CVA was typically unilateral, incorporating only the possibility of 
counterparty default, with institutions assuming themselves to be default-free.

• If the counterparty has low credit quality then the CVA is larger, and the NPV of the trade is 
less positive, or more negative. Other institutions would require a lower spread to buy 
protection from that counterparty, and would sell protection at a higher spread.

• During 2008 as credit quality of financial institutions fell,  all buyers offered lower spreads, and 
all sellers demanded higher spreads, leading to a loss of liquidity.

• CVAs that incorporate the possibility of either counterparty defaulting avoid this. “Bilateral” 
CVAs are symmetric, so if two counterparties have the same view of the reference entity’s, 
their own and each others’ credit quality, they will agree on the CVA.

• CVA can be decomposed into two parts:

• Asset Charge: NPV of counterparty defaulting when trade is in the money

• Liability Benefit: NPV of us defaulting when the trade is out of the money
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Calculating CVA

Counterparty Valuation Adjustment (CVA). 2009. Shahram Alavian, Jie Ding, Peter Whitehead & Leonardo 
Laudicina.

• For a general trade or portfolio

• Where

RRC = Recovery rate of counterparty
RRS = Recovery rate of self
B(0,t) = Discount factor from 0 to t
V(t) = Valuation of trade/portfolio at time t (excluding counterparty risk)
V+(t) = max[0,V(t)], V-(t) = min[0,V(t)]
τC = Default time of counterparty
τs = Default time of self
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• There is no static replicating portfolio of standard trades. CVA contains optionality - it depend 
on the volatility of the underlying, so not possible to replicate with first-to-defaults and 
second-to-defaults.

• As usual for credit products, we assume recovery and interest rates are deterministic.

• Need to model the relationship between valuation of the CDS and default times of self and 
counterparty. This is difficult as it requires modelling spreads and default times/probabilities.
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Calculating CVA for CDS
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• We begin by ignoring the effect of netting and CSAs. We will look at ways to relax these 
assumptions later.

• In this case:
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Summary of models in this presentation

Advantages
Independent 

Model
Markov Chain 

Model
Brigo’s BR-CVA 

Model

Complexity
Easy to understand 

and implement
More complex Most complex

Inputs Observable Mostly observable
Mostly 

unobservable

Monte Carlo Optional Optional Required

Simplifying 
Assumptions

Many Some Few

Wrong-way risk No Yes Yes

Default correlation No Yes Yes
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Independent model for calculating CVA

• Assume:

• Independence of defaults and portfolio value

• S(t), the spread on the reference credit has Black dynamics(*)

• Can calculate the asset charge and liability benefit using:
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(*) Valuation of Portfolio Credit Default Swaptions. 2002. Claus Pedersen.
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Example CVA (Independent model)

• Model Inputs

• Bought protection

• Notional = $10MM

• Maturity = 5 years

• CDS spread = 500bps

• Interest rate = 2%

• Volatility = 80%

• Model Outputs:

• PV (excluding CVA) = $1,176k

• Liability benefit = -$8k

• Asset Charge = $58k

• PV (including CVA) = $1,126k

Recovery
5y Market 

Spread

Self 10% 120bps

Underlying 40% 850bps

Counterparty 10% 180bps
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Hedging (Independent model)

• Counterparty risk can be hedged by buying CDS protection on the counterparty

• Self risk can (theoretically) be hedged by selling CDS protection on one’s own name. It might 
be hard to find interested counterparties.

• To calculate hedge amounts, take the ratio of the change in CVA with a 1bp shift in the 
counterparty’s (own) CDS spread to the DV01 of the counterparty’s (own) CDS

Counterparty Self

Change in asset charge with 1bp shift $313 -$12

Change in liability benefit with 1bp shift $2 -$67

DV01 (CDS on underlying with CVA) -$315 $79

DV01 (CDS on c'party/self) $4,406 $4,559

Hedge notional $714,934 -$173,283

Hedge notional percentage of trade 
notional

7.1% -1.7%
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CVA sensitivities (Independent model)

-80,000 

-60,000 

-40,000 

-20,000 

0 

20,000 

40,000 

60,000 

80,000 

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00%

vs self spread

-80,000 

-60,000 

-40,000 

-20,000 

0 

20,000 

40,000 

60,000 

80,000 

0% 2% 4% 6% 8% 10% 12%

vs reference entity spread

-80,000 

-60,000 

-40,000 

-20,000 

0 

20,000 

40,000 

60,000 

80,000 

0.00% 1.00% 2.00% 3.00% 4.00% 5.00%

vs counterparty spread

-80,000 

-60,000 

-40,000 

-20,000 

0 

20,000 

40,000 

60,000 

80,000 

0% 25% 50% 75% 100% 125% 150%

vs volatility



18

Comments on CVA sensitivities

• The CVA is sensitive to the spread of the  reference entity. As a result our delta is less than 1 
(vs the CDS excluding counterparty risk effects).

• Increases in the counterparty spread increase the asset charge, reducing trade valuation.

• Increases in self spread increase the size of the liability benefit, increasing the trade valuation.  
In general we expect increases in self spread have the opposite effect on trade valuation of 
increases in counterparty spread.

• Here the trade pays 500bps vs the market spread of 850bps. The liability option is very out of 
the money, so the liability benefit is small vs the asset charge and the effect of counterparty 
spread is more important than self spread.
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Incorporating correlation

• Example of the effect of correlation:

• Suppose we have bought protection on a reference entity and there is positive 
correlation between the credit quality of the reference entity and the counterparty.

• The counterparty is most likely to default when bought protection is most valuable.
[ E(V+|τc=t,τs>t) will be higher than in the independent case. ]

• We would expect the asset charge will be higher.



20

Markov Chain Model

• Correlation from increased default intensity for underlying if counterparty or self default.

• Calibrate by setting λ'U = αλU (choose α based on historical data), and solving for λU so that the 
default-free CDS on the underlying reprices the market.

• Possible extensions:

• Underlying default intensity different in S or C (e.g. if counterparty less systemically 
important).

• More than one underlying (e.g. for portfolio of CDS).

Self , then 
underlying

defaulted (SU)

Counterparty,
then 

underlying 
defaulted (CU)

λ'U

λ'U

Counterparty 
defaulted (C)

Underlying
defaulted (U)

Self defaulted 
(S)

λU

No defaults 
(0)
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Effect of correlation on CVA (MC Model)

• In this example, correlation has  large effect on counterparty risk. The CVA increases by a 
factor of up to 5.

• The delta for counterparty spread moves is increased by a factor of 4. In the most extreme 
case the delta is 20% (we would buy $2MM notional on the counterparty per $10MM on the 
reference entity). 

• As the CDS contract is in the money, the potential for liability is small, so the delta for self 
spread moves is small.
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Brigo’s BR-CVA Model (Part 1)

• For each obligor, unconditional default intensities are simulated using an independent CIR 
process plus a deterministic function of time, used to fit to market spreads. These intensities 
are integrated to calculate unconditional default probabilities for each name over time.

• A uniform variate for each name determines default time
(eg the red dot has U0 = 0.097, U1 = 0.174, U2 = 0.046)

• Default of obligor i occurs when Ui > Ci. (eg the red dot indicates obligor 2 defaults at time 3.13 
and obligor 1 would default shortly after time 5).
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2009. Damiano Brigo & Agostino Capponi.
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Brigo’s BR-CVA Model (Part 2)

• If the counterparty (2) defaults before either us or the underlying and prior to the maturity of 
the CDS, and the value of the CDS is positive at the default time, the CDS value contributes to 
the asset charge for that simulation.

• If we (0) default before either the counterparty or the underlying and prior to the maturity of 
the CDS, and the value of the CDS is negative at the default time, the CDS value contributes to 
the liability benefit for that simulation.

• The CDS must be valued conditional on the value of the uniform variate representing the 
defaulting obligor. The conditional probabilities of default can be calculated by

• The easiest way to approximate the cumulative density function of the the integrated CIR 
intensity process is using:
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Incorporating CSAs

• CSAs with no threshold

• Remaining risk is jump risk – hard to model, little available data.

• CSAs with a threshold

• Independent and Markov Chain models: For liability benefit, model V-(t) as a put on V(t) 
at 0bps and a call at -Threshold / [Notional × (1-PU (t) × PV of risky annuity].

• BR-CVA and Monte Carlo model: Restrict V(t) to below the threshold in each simulation.

• CSAs with rating triggers – need to model a rating process.

• Markov Chain model: Incorporate extra states for downgrade . Self can default directly, 
or default from downgraded state with different intensities.

• BR-CVA model: Imply spreads from current values of CIR processes, and from these a 
rating process based on implied spread. Restrict V(t) within a simulation if rating trigger 
is breached.
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Incorporating netting

• Difficult because need to model spread evolution and default states for a portfolio of obligors.

• Markov Chain model

• Can extend number of states to incorporate each possible set of defaults.

• Can simply transition matrix by assuming intensity on each obligor is a function of 
original intensity and number of defaults.

• Quickly becomes unwieldy to do analytically. Monte Carlo is feasible.

• BR-CVA model

• Simulate a CIR process correlated uniform for each underlying.

• If counterparty or self default before maturity of portfolio, value entire portfolio, 
conditional on values of uniform variates of all defaulted obligors, including 
counterparty/self.
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Conclusion

• With the rise in credit spreads since 2007, and several high-profile defaults, credit risk has 
been an increasingly important issue.

• Central clearing alleviates some of the systemic impact of credit risk, but it remains an issue 
for exotic trades, and particularly for the buy-side.

• Credit risk is incorporated by including a credit value adjustment when pricing a deal. In the 
past this has focussed mostly on the risk of the counterparty defaulting. More recently it has 
been necessary to factor in one's own risk

• Calculating credit value adjustment for CDS trades requires modelling the default and spread 
volatility of the reference entity, the defaults of the counterparty and ourself, and the relation 
between these.

• The main factor driving the credit value adjustment is the correlation between the spread of 
the reference entity and counterparty or self defaulting - high positive correlation would tend 
to cause bought protection to be worth less.

• Finally, we looked at future extensions to existing models to deal with more intricate features 
of CSAs.
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